50 research outputs found

    Beyond Blackboards: Engaging Underserved Middle School Students in Engineering

    Get PDF
    Beyond Blackboards is an inquiry-centered, after-school program designed to enhance middle school students’ engagement with engineering through design-based experiences focused on the 21st Century Engineering Challenges. Set within a predominantly lowincome, majority-minority community, our study aims to investigate the impact of Beyond Blackboards on students’ interest in and understanding of engineering, as well as their ability to align their educational and career plans. We compare participants’ and nonparticipants’ questionnaire responses before the implementation and at the end of the program’s first academic year. Statistically significant findings indicate a school-wide increase in students’ interest in engineering careers, supporting a shift in school culture. However, only program participants showed increased enjoyment of design-based strategies, understanding of what engineers do, and awareness of the steps for preparing for an engineering career. These quantitative findings are supported by qualitative evidence from participant focus groups highlighting the importance of mentors in shaping students’ awareness of opportunities within engineering

    Meeting the ISTE Challenge in the Field: An Overview of the First Six Distinguished Achievement Award Winning Programs

    Get PDF
    The 2002 National Educational Technology Standards (NETS) Distinguished Achievement Awards, sponsored by the International Society for Technology in Education (ISTE), were awarded to six teacher education programs across the United States. The awards recognize institutions that exemplify successful integration of the National Educational Technology Standards for Teachers (NETS[solid dot]T) into teacher education programs. Institutions across the country completed an extensive application process to be selected one of the first six recipients of the ISTE Distinguished Achievement award. This process included online documentation that demonstrated the program\u27s implementation of the NETS[solid dot]T models and practices. This article provides a means of uniting various programs and program developers (teacher educators and instructional technologists) by looking at the most common obstacles they face in the pursuit of appropriate infusion of technology into teacher education programs and workable solutions for overcoming those obstacles

    Formal System Processing of Juveniles: Effects on Delinquency

    Get PDF
    Justice practitioners have tremendous discretion on how to handle juvenile offenders. Police officers, district attorneys, juvenile court intake officers, juvenile and family court judges, and other officials can decide whether the juvenile should be “officially processed” by the juvenile justice system, diverted from the system to a program, counseling or some other services, or to do nothing at all (release the juvenile altogether). An important policy question is which strategy leads to the best outcomes for juveniles. This is an important question in the United States, but many other nations are concerned with the decision to formally process or divert juvenile offenders. There have been a number of randomized experiments in the juvenile courts that have examined the impact of juvenile system processing that should be gathered together in a systematic fashion to provide rigorous evidence about the impact of this decision on subsequent offending by juveniles. Our objective is to answer the question: Does juvenile system processing reduce subsequent delinquency? Based on the evidence presented in this report, juvenile system processing appears to not have a crime control effect, and across all measures appears to increase delinquency. This was true across measures of prevalence, incidence, severity, and self-report. Given the additional financial costs associated with system processing (especially when compared to doing nothing) and the lack of evidence for any public safety benefit, jurisdictions should review their policies regarding the handling of juveniles

    Scared Straight and Other Juvenile Awareness Programs for Preventing Juvenile Delinquency: A Systematic Review

    Get PDF
    Programs like ‘Scared Straight’ involve organized visits to prison facilities by juvenile delinquents or children at risk for becoming delinquent. The programs are designed to deter participants from future offending by providing first-hand observations of prison life and interaction with adult inmates. Results of this review indicate that not only does it fail to deter crime but it actually leads to more offending behavior. Government officials permitting this program need to adopt rigorous evaluation to ensure that they are not causing more harm to the very citizens they pledge to protect

    Influence of fecal collection conditions and 16S rRNA gene sequencing at two centers on human gut microbiota analysis

    Full text link
    To optimise fecal sampling for reproducible analysis of the gut microbiome, we compared different methods of sample collection and sequencing of 16S rRNA genes at two centers. Samples collected from six individuals on three consecutive days were placed in commercial collection tubes (OMNIgeneGut OMR-200) or in sterile screw-top tubes in a home fridge or home freezer for 6-24 h, before transfer and storage at-80 °C. Replicate samples were shipped to centers in Australia and the USA for DNA extraction and sequencing by their respective PCR protocols, and analysed with the same bioinformatic pipeline. Variation in gut microbiome was dominated by differences between individuals. Minor differences in the abundance of taxa were found between collection-processing methods and day of collection, and between the two centers. We conclude that collection with storage and transport at 4 °C within 24 h is adequate for 16S rRNA analysis of the gut microbiome. Other factors including differences in PCR and sequencing methods account for relatively minor variation compared to differences between individuals

    A framework for human microbiome research

    Get PDF
    A variety of microbial communities and their genes (the microbiome) exist throughout the human body, with fundamental roles in human health and disease. The National Institutes of Health (NIH)-funded Human Microbiome Project Consortium has established a population-scale framework to develop metagenomic protocols, resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 or 18 body sites up to three times, which have generated 5,177 microbial taxonomic profiles from 16S ribosomal RNA genes and over 3.5 terabases of metagenomic sequence so far. In parallel, approximately 800 reference strains isolated from the human body have been sequenced. Collectively, these data represent the largest resource describing the abundance and variety of the human microbiome, while providing a framework for current and future studies

    Structure, function and diversity of the healthy human microbiome

    Get PDF
    Author Posting. © The Authors, 2012. This article is posted here by permission of Nature Publishing Group. The definitive version was published in Nature 486 (2012): 207-214, doi:10.1038/nature11234.Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.This research was supported in part by National Institutes of Health grants U54HG004969 to B.W.B.; U54HG003273 to R.A.G.; U54HG004973 to R.A.G., S.K.H. and J.F.P.; U54HG003067 to E.S.Lander; U54AI084844 to K.E.N.; N01AI30071 to R.L.Strausberg; U54HG004968 to G.M.W.; U01HG004866 to O.R.W.; U54HG003079 to R.K.W.; R01HG005969 to C.H.; R01HG004872 to R.K.; R01HG004885 to M.P.; R01HG005975 to P.D.S.; R01HG004908 to Y.Y.; R01HG004900 to M.K.Cho and P. Sankar; R01HG005171 to D.E.H.; R01HG004853 to A.L.M.; R01HG004856 to R.R.; R01HG004877 to R.R.S. and R.F.; R01HG005172 to P. Spicer.; R01HG004857 to M.P.; R01HG004906 to T.M.S.; R21HG005811 to E.A.V.; M.J.B. was supported by UH2AR057506; G.A.B. was supported by UH2AI083263 and UH3AI083263 (G.A.B., C. N. Cornelissen, L. K. Eaves and J. F. Strauss); S.M.H. was supported by UH3DK083993 (V. B. Young, E. B. Chang, F. Meyer, T. M. S., M. L. Sogin, J. M. Tiedje); K.P.R. was supported by UH2DK083990 (J. V.); J.A.S. and H.H.K. were supported by UH2AR057504 and UH3AR057504 (J.A.S.); DP2OD001500 to K.M.A.; N01HG62088 to the Coriell Institute for Medical Research; U01DE016937 to F.E.D.; S.K.H. was supported by RC1DE0202098 and R01DE021574 (S.K.H. and H. Li); J.I. was supported by R21CA139193 (J.I. and D. S. Michaud); K.P.L. was supported by P30DE020751 (D. J. Smith); Army Research Office grant W911NF-11-1-0473 to C.H.; National Science Foundation grants NSF DBI-1053486 to C.H. and NSF IIS-0812111 to M.P.; The Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231 for P.S. C.; LANL Laboratory-Directed Research and Development grant 20100034DR and the US Defense Threat Reduction Agency grants B104153I and B084531I to P.S.C.; Research Foundation - Flanders (FWO) grant to K.F. and J.Raes; R.K. is an HHMI Early Career Scientist; Gordon&BettyMoore Foundation funding and institutional funding fromthe J. David Gladstone Institutes to K.S.P.; A.M.S. was supported by fellowships provided by the Rackham Graduate School and the NIH Molecular Mechanisms in Microbial Pathogenesis Training Grant T32AI007528; a Crohn’s and Colitis Foundation of Canada Grant in Aid of Research to E.A.V.; 2010 IBM Faculty Award to K.C.W.; analysis of the HMPdata was performed using National Energy Research Scientific Computing resources, the BluBioU Computational Resource at Rice University

    Commentary: A Framework for Supporting Learning and Teaching About Mathematical and Scientific Models

    No full text
    It was with great interest that I recently read Using Technology to Support Prospective Science Teachers in Learning and Teaching About Scientific Models (Cullin & Crawford, 2003). This article presented a convincing argument that the role of models and modeling in science education represented an important and often neglected aspect of investigative science in the classroom. Specifically, the paper presented efforts to engage preservice secondary science teachers participating in a methods course and teaching practicum in modeling experiences ultimately brought to the fore by building and testing dynamic computer models. While the results were mixed, there was a demonstrated shift in the preservice teachers' views of model use from a teacher-centered use for explaining concepts to a student-centered approach using models to learn about natural phenomena. This article presents a framework for thinking about the use of models and model-based curriculum in K-12 settings. In doing so, it draws from the work of two colleagues, Leona Schauble and Richard Lehrer, as well as research we conducted together while I was a postdoctoral fellow at The University of Wisconsin and my subsequent work at The University of Texas. The article also proposes that it may be time to look at modeling as a tool that requires both scientific and mathematical reasoning to fully leverage the power of sophisticated thinking by both students and teachers. There has been a shift in recent years in thinking about mathematics and science instruction. This shift is best exemplified by a transition from pedagogical approaches based on learning facts and procedures to those oriented around constructing, evaluating, and revising models. To be clear, models may be thought of as any number of conceptual entities for the purpose of our discussion. These entities include physical microcosms, representational systems, syntactic models, and hypothetical-deductivemodels. Target Audience: High School Faculty/Administrators, 2-4 Year College Faculty/Administrator
    corecore